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Abstract. A variant of a gauge theory is formulated to describe disclinations on Riemannian
surfaces that may change both the Gaussian (intrinsic) and mean (extrinsic) curvatures, which
implies that both internal strains and a location of the surface inR3 may vary. Moreover, originally
distributed disclinations are taken into account. For the flat surface, an extended variant of the
Edelen–Kadíc gauge theory is obtained. Within the linear scheme our model recovers the von
Karman equations for membranes, with a disclination-induced source being generated by gauge
fields. For a single disclination on an arbitrary elastic surface a covariant generalization of the von
Karman equations is derived.

1. Introduction

Elastic two-dimensional structures which are free to change their geometry (membranes,
thin films, etc) as well as deformable materials with spherical or tubular shapes (fullerenes,
nanotubes) are of considerable current interest (see, e.g. [1–3] and the references therein). The
properties of these crystalline structures are found to be essentially affected by their topology.
It has been found that topological defects, first of all disclinations, play an important role
in these objects. In particular, the Kosterlitz–Thouless disclination unbinding transition in
hexatic membranes was shown to depend on shape fluctuations [4, 5] since a membrane with a
single disclination can lower its energy by buckling. Fullerenes and nanotubes always contain
at least 12 disclinations on their surfaces (i.e. fivefold coordinated sites) as a consequence of
the Euler theorem. The effect of shape fluctuations on the interaction of the disclinations on a
spherical surface with genus zero was studied in [6].

Elastic models for membranes and shells are well known (see, e.g. [7, 8] and the references
therein). The main problem is how to incorporate defects into the elastic theory of two-
dimensional fluctuating surfaces. A possible way has been considered in [1] where defects
were introducedad hocas source terms in the right-hand side of the von Karman equations.
This approach is efficient in describing monolayers as well as membranes under the condition
that the bending rigidity which controls out-of-plane fluctuations is small. Similar approaches
were developed in [4] where the Coulomb-like model was formulated. Disclinations were
introduced there as the point-like charges on the curved surface.

The modern trends in the theoretical description of topological defects in condensed matter
include geometrical and gauge-theory methods (see, e.g. [9–11]). In the present paper we put
forward a gauge theory that enables one to describe disclinations on two-dimensional (2D)
elastic surfaces that may change both their intrinsic and extrinsic geometry. Namely, both the
internal strain and the location of the surface inR3 may vary. By analogy with the Edelen–
Kadić (EK) gauge model of dislocation and disclinations [12, 13], defects are incorporated via
dynamical gauge fields. However, we formulate some principal statements which provide quite
a new geometrical setting to handle a problem of describing defect-developing deformations of
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an elastic body. As is shown later, this allows one to describe defects on arbitrarily fluctuating
surfaces as well as dynamics of originally distributed defects. Notice that even in the 2D planar
case our theory does not identically coincide with that obtained within the EK approach [14].
As a matter of fact, it includes the latter as a particular case and allows for the possibility to
include objects with originally distributed disclinations.

A basic motivation for our investigation has been that of extending the EK gauge theory
to include non-trivial geometry in the 2D case, for example that of membranes, spheres, etc. It
should be emphasized that within the standard EK approach there is no room for such objects at
all. Indeed, within that approach deformation is mathematically described as a diffeomorphic
mapping of a defect-freedomainD0 ∈ Rn which is usually called a reference configuration to
another domainD ∈ Rn (current configuration) with non-Euclidean metric tensorg. By their
very definition,D0 andD necessarily have the same dimensionn, thereby ruling out the possi-
bility of considering dynamics of, say, defects on 2D surfaces for they are not domains inR3.

Any attempt at generalizing the EK theory to study disclinations on general manifolds
should imply two steps. First, one has to appropriately reformulate a classical theory of
elasticity and, second, to introduce in the obtained new geometrical setting dynamical gauge
fields. A straightforward generalization might be that of considering a diffeomorphic map
χ : D0 ∈ 6→ D ∈ 6, where6 stands for a Riemannian surface† (i.e. a 2D real Riemannian
manifold) located inR3. This map can (locally) be described by functionsχa(xb) (a, b = 1, 2),
wherexa denotes a point inD0 andχa corresponds to coordinates inD. A resulting Lagrangian
to describe elastic properties of the media would follow as a function of the state vectorχa(x),
which would result in a kind of field theory in the non-trivial geometrical background. To
include defects an appropriate gauge field on a curved space6 would be further required, an
obvious complication in contrast with the EK approach.

The present approach has been proven to adequately incorporate dynamics of disclinations
on varying elastic surfaces as well as to take into account originally distributed defects. The
key observation that considerably simplifies and at the same time generalizes the matter is that
one should consider surfaces6 being embedded into a three-dimensional flat spaceR3 instead
of proceeding entirely in terms of its intrinsic geometry. As we shall see shortly, following
this idea will lead us to a fairly plain and surprisingly complete theory of defect dynamics on
curved surfaces.

The paper is structured as follows. In section 2 we formulate the gauge model of
disclinations on 2D elastic surfaces. The action which includes elastic deformations, self-
energy of disclinations, and the curvature energy is constructed in a self-consistent way. A
complete set of equations of motion is presented in section 3. To illustrate the model, we
consider three examples in section 4. First, we derive equations of motion for the planar case
and show that they are distinct from those obtained within the EK approach. Second, we
study a problem of the fluctuating surface by employing the linear approximation. In this case,
the known equations for fluctuating membranes are recovered in a self-consistent way with a
source formed by the gauge disclination fields. Finally, a concrete realization of the model
for a single disclination on an arbitrary elastic surface is presented. Section 5 is devoted to
concluding comments.

2. The model

Before proceeding, a few comments on the limitations of the theory as well as on the
conventions employed are to be made. First, we are solely concerned with the 2D case,

† In particular,6may denote aRiemannsurface, that is a one-dimensional (1D) compact orientable complex manifold.
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although our formalism can easily be extended to any space dimensions. Our motivation is
that the 2D case is both the most important in applications and at the same time the simplest
one in notation†. Second, we take into consideration only the rotational symmetry of a system
thereby making an attempt at describing disclinations and leaving aside dislocations and other
defects. By turning to the full-fledged internal symmetry group instead of the orthogonal
one the above restriction might be avoided, although it will evidently entail considerable
conventional complications. Finally, static configurations are only considered, which does not
seem, however, to be a deficiency in the following exposition, since including time evolution
brings in no novel features compared to the EK theory.

An action that is assumed to properly describe dynamics of disclinations on a deformable
elastic surface is taken in the form

S = Sel + Sgauge+ Sfl (1)

whereSel describes the elastic properties of the media,Sgaugestands for the action of a gauge
field that incorporates self-action for disclinations, andSfl is the Helfrich–Canham action
[15, 16] to describe the energy of a free fluctuating surface.

Let us start by discussing the first piece of the action. Letxa(a = 1, 2) be a set of local
coordinates on a certain Riemannian surface60. (Indicesa, b, c, ... = 1, 2 are tangential
to 60, whereasi, j, k, ... = 1, 2, 3 run over the basis ofR3). Under a deformation,60

is assumed to evolve into some other surface6. To describe this we find it convenient to
introduce embeddings60, 6→ R3 that can be realized in terms of twoR3-valued functions
Ri(0)(x

1, x2) andRi(x1, x2), respectively. As the point(x1, x2) is varied vectorsER(0) and
ER sweep surfaces60 and6, respectively. This is nothing but a familiar two-parametric
representation of surfaces inR3, the point, however, being that

ER(x) := φ∗ ER(0) = ER(0)[φ(x)] (2)

whereφ∗ is a pullback ofφ : 60 → 6. In what follows functionsRi(0)(x
1, x2) are chosen

to specify an initial configuration60, whereas dynamical variablesRi(x1, x2) are taken to
describe the deformation60 → 6. With these conventions at hand, a proper generalization
of the elasticity theory turns out to be a straightforward matter.

Representations for the induced metrics follow immediately

gab ≡ (g60)ab = ∂a ER(0) · ∂b ER(0)
g̃ab ≡ (φ∗g6)ab = (g6)cd ∂φ

c

∂xa
· ∂φ

d

∂xb
= ∂ ER
∂φc
· ∂
ER

∂φd

∂φc

∂xa
· ∂φ

d

∂xb
= ∂a ER · ∂b ER (3)

where the set{φa} stands for local coordinates on6. The strain tensor is determined to be
[17, 18]

Eab = g̃ab − gab.
The elastic properties of the deformed surface are described by an action

Sel = −1

8

∫
60

dx1 dx2√g{λ(trE)2 + 2µ trE2} (4)

where trE = gabEab, g = det‖gab‖ and summation over repeated indices is assumed. Let us
mention that we omit in (4) the terms of orderE3 and higher. In some special cases they can
be considered as well (see, e.g. [13]).

To proceed, a properly defined gauge field to describe disclinations is to be introduced.
To make this point transparent, let us step a bit aside and discuss the principle of a local gauge

† 1D case is irrelevant for us here since there are no 1D objects with an intrinsic curvature.
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invariance from the geometric viewpoint. In this regard, a simple example may be of some
help. Consider a scalar complex field(ψ, ψ̄) : x ∈ Rn → C. Let a Lagrangian exhibit
a globalU(1) symmetry: L → L under a transformationψ → eiαψ , ψ̄ → e−iαψ̄ . In
what way can the local gauge fields then be introduced? To this end, one considersψ andψ̄
as a description not of a mapRn → C but of sections of a lineC-bundle overRn with the
structure groupU(1). This is a trivial bundle which admits global sections. A connection on
this bundle† is a familiar gauge fieldAµ which can be regarded as aU(1) valued 1-form. The
resulting theory is nothing but scalar electrodynamics.

In order to incorporate disclinations in the elasticity theory (4), one should, as the above
example suggests, consider theR3-vector bundle over6 and theR3

(0)-bundle over60 with the

same structure groupsSO(3). Theso(3)-valued 1-formA(0)a (x) dxa (A(0)a = EW(0)
a · EL,Li ∈

so(3)) serves as a connection 1-form in theR3
(0)-bundle space over60, with EW(0)

a being the
gauge potentials. A connection on theR3-bundle over60 is obtained by pulling back the
connection of theR3-bundle over6:

EWa := φ∗ EWa|6 = ∂aφb( EWb|6).
By replacing in (4) the ordinary derivatives∂a ER and∂a ER(0) by the covariant ones∇a ER =
∂a ER + [ EWa, ER] and∇a ER(0) = ∂a ER(0) + [ EW(0)

a , ER(0)], respectively, one arrives at the desired
locally SO(3) invariant representation for the elasticity Lagrangian.

A few remarks are in order at this stage. First, we consider potentialsEW(0)
a as given

fixed functions to describe disclinations originally distributed on60. These potentials, being
involved in a full set of equations of motion, provide the possibility of keeping track of the
dynamics of these disclinations under deformation. Such a possibility is missing in the standard
EK theory where from the very beginning only defect-free initial configurations are allowed.

Second, although essentially two-dimensional manifolds are considered, thethree-
dimensional rotational groupSO(3) is involved, which seems to be quite natural in the
framework of our approach. Enlarging the structure group to the semidirect product
SO(3) B T (3), whereT (3) stands for the group of translations inR3, enables one to take into
consideration both disclinations and dislocations.

Third, if we made an attempt to formulate an appropriate gauge theory in the scope of the
direct generalization of the EK approach, we would encounter the following problem. With
theχa(x) not being the6-valued functions defined on6 but local sections of a6-bundle
over6, the derivatives∂aχb must be replaced by suitable covariant derivatives. What would
be the ‘gauge group’ in the definition of these covariant derivatives. In general, this would
be the infinite-dimensional group Diff6 of all diffeomorphisms of6 which is a fibre of the
bundle. For an arbitrary6 it almost surely does not include rotations in contrast to the group
Diff R3 = GL(3, R) 3 SO(3). To find a way out, one might be tempted to relate defects to
a group of all isometries of(6, g) rather than toSO(3). This group belongs to Diff6 and is
generated by operatorŝVa obeying

LVag = 0

whereLVa denote Lie derivatives along corresponding vector fieldsVa. Needless to say, these
equations cannot be, in general, solved explicitly, except in a few simple instances, for example
planes, spheres, and other highly symmetrical objects. In a general case, however, and as long
as theSO(3) group is taken to be relevant for describing disclinations, this approach seems to
pose a problem.

† To be more precise, a connection 1-form is defined on the associated principal bundleP(Rn;U(1)) and completely
specifies the covariant derivative on aC-bundle overRn.
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Let us now turn to the second piece of the whole action,Sgauge, which describes a self-
energy of disclinations. It acquires a standard form of theSO(3) Yang–Mills action:

Sgauge= − s
4

∫
60

√
g dx1 dx2〈Fab,Fab〉 (5)

wheres is a coupling strength, the form〈, 〉 stands for theso(3) Killing trace, and theso(3)-
valued curvature tensorFab = EFab · EL, EFab = ∂a EWb− ∂b EWa + [ EWa, EWb]. Theso(3) generators
Li obey the following commutation rules

[Li, Lj ] = εkij Lk i, j, k = 1, 2, 3

whereεkij stands for the fully antisymmetric tensor inR3.
Finally, the Helfrich–Canham action that describes a self-energy of a fluctuating 2-surface

in R3 looks like [15, 16]

Sf l = κ

2

∫
60

√
g dx1 dx2 (trK)2 +

κG

2

∫
60

√
g dx1 dx2 det gabKbc (6)

whereκ is a bare bending rigidity andκG is a Gaussian rigidity

Kab = EN ·DaDb
ER (7)

is the curvature tensor, andEN is the unit normal to the surface

EN = [∂1 ER, ∂2 ER]

|[∂1 ER, ∂2 ER]| .

The covariant derivative

Da := ∂a + 0a

includes the Levi-Civita connection0a to be written down explicitly in the next section. Two
scalar functions enter (6): trK = gabKab which is called the mean (extrinsic) curvature, and
S = det gabKbc which is referred to as the Gaussian (intrinsic) curvature. In view of the fact
that the second term on the right-hand side of (6) is a topological invariant and depends only
on the genus of the surface, it does not affect classical equations of motion. Incorporating
disclinations amounts then to performing in the above formulae a substitution

∂a → ∇a
which results in the observation that both terms of action (6) will now contribute to the equations
of motion.

3. Equations of motion

Equations of motion follow from the Hamilton principle of stationary actionδS = 0 and read

Db Eσb + EJ = 0 (8)

sDa EFab − 1
2[ ER, Eσb] + 1

2
EI b = 0 (9)

where a set of stress vectors†

Eσb = 1
2(∇a ER)ρab (10)

with

ρab := λ gab trE + 2µEab (11)

† As was already mentioned, indexa corresponds to the tangent spaceT60, whereasi is referred to the basis of the
underlying spaceR3. These are different manifolds and consequentlyEσa = {σai } are viewed as aset of vectorsin R3.
On the other hand, these spaces coincide in the EK approach andσai reduces to a stresstensor.
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has been introduced. The total covariant derivative

Da := ∇a + 0a

includes the Levi-Civita (torsion-free, metric compatible) connection

0bac := (0a)bc =
1

2
gbd

(
∂gdc

∂xa
+
∂gad

∂xc
− ∂gac
∂xd

)
(12)

to take care of a metric factor
√
g in equations (4)–(6) when a variation of the total action is

calculated. It is noteworthy that0a depends onEW(0)
a that enters in a definition ofgab:

gab = ∇a ER(0) · ∇b ER(0) = ∂a ER(0) · ∂b ER(0) + ∂a ER(0)[ EW(0)
b , ER(0)] + ∂b ER(0)[ EW(0)

a , ER(0)]
+( EW(0)

a
EW(0)
b ) ER2

(0) − ( EW(0)
a
ER(0))( EW(0)

b
ER(0)). (13)

We have also abbreviated

EJ = 1√
g

δSfl

δ ER
EI b = 1√

g

δSfl

δ EWb

bearing in mind that explicit formulae are available in particular cases.
Obviously, for the elastic plane without defects (8) reduces to the well known equilibrium

equation∂b Eσb = 0 while (9) is absent. In the general case, both the gauge fields and the affine
connection enter (8) and (9) thus affecting stress fields. In view of (12)

0bba =
1

2

∂

∂xa
logg g = det‖gab‖

and one may consequently rewrite equations (8) and (9) in the form

1√
g
∂b (
√
gEσb) + [ EWb, Eσb] + EJ = 0 (14)

and

1√
g
∂a (
√
gF ab) +

1

2s
[ Eσb, ER] +

1

2s
EI b = 0 (15)

respectively. As is seen, the basic self-consistent equations of the model are strongly nonlinear
and it is difficult to get the general solution of the problem. It will be shown later, however,
that for some physically interesting problems these equations become essentially simpler and
can be solved explicitly.

4. Applications

In this section we intend to consider three explicit realizations of the above theory. First, we
show how the standard 2D EK theory emerges in the framework of our approach. Second,
we consider the case of fluctuating elastic membranes which is important in applications, and,
finally, a single disclination on arbitrary elastic surface is examined.

4.1. Disclinations on elastic plane

Let us start by recalling an explicit formulation of the 2D EK theory [14]. Consider a
diffeomorphic mapχ : D0 → D, whereD0 ∈ R2 appears as a strain-free (which means
gab = δab) domain andD ∈ R2 stands for its image under deformation. Evidently,χa can be
viewed upon asR2-vector valued functions. The resulting action that describes the dynamics of
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disclinations on a planar elastic body consists of two termsSel andSgaugegiven by equations (4)
and (5), respectively, provided one puts

Eab = EBa · EBb − δab EBa = ∂a Eχ + [ EWa, Eχ ]

where EWa = (0, 0,Wa). A complete set of Euler–Lagrange equations can be easily derived
and shown to possess exact vortex-like solutions [19].

On the other hand, the basic notation of our theory in this case is as follows. First,
we have the embeddings:ER(0) = (x, y,0) and ER = (R1(x, y), R2(x, y),0), wherex, y
are Cartesian coordinates. Evidently, one hasEWa = (0, 0,Wa), EFab = (0, 0, F ab), where
Fab = ∂aWb − ∂bWa. The same representation holds forEW(0)

a which appears as a fixed gauge
field associated with originally distributed disclinations.

Equations of motion (8) and (9) take the form( EJ = EI a = 0)
1√
g
∂b(
√
gEσb) + [ EWb, Eσb] = 0

1√
g
∂a (
√
gF ab) +

1

2s
[ Eσb, ER] = 0

whereg = det‖gab‖ and in view of equation (13)

gab = δab + εαaW
(0)
b Rα(0) + εβbW

(0)
a R

β

(0) + (W(0)
a W

(0)
b ) ER2

(0) α, β = 1, 2.

The metric tensorgab is seen to deviate from its flat counterpartδab atW(0) 6= 0, whereby a
non-trivial geometry is dynamically generated. It is at this point that our theory deviates from
the standard EK one even in the trivial planar case.

At W(0) = 0 the above equations reduce to those of the 2D EK theory [14]. In the linear
approximation [20] no interaction betweenWa andW(0)

a fields occurs, so that a total disclination
flow

∮ EW dEl that determines a source which gives rise to disclination-induced displacements,
is found to be EW = EW − EW(0).

4.2. Disclinations on membranes

Let us now turn to the gauge theory of defects for fluctuating membranes starting from (8)
and (9), our aim being first to recover a conventional Landau theory without defects. No
disclinations are assumed to be originally distributed as well, so that we putEW(0)

a = 0. A flat
membrane that fluctuates in thez-direction can be described by the embeddings

ER(0) = (x, y,0) ER = (x + ux, y + uy, f )

where ER = ER(0) + EU and EU = (ux, uy, f ) is a displacement of the(x, y,0) point under
deformation. (In writing out theEU components we stick to the Landau notation [7].) In
accordance with the Landau theoryEU is assumed to be small in the transverse directions,
along with the requirement that itsz-component,f (x, y), is to be viewed as a slowly-varying
function. Precise restrictions on components ofEU directly follow those in [7]. It is clear
by obvious reasoning that within the adopted approximations only thez-component of EWa

matters, so that we may putEWa = (0, 0,Wa). The strain tensor is then determined to be

Eab = ∇a ER · ∇b ER − δab
= ∂aub + ∂bua + ∂af ∂bf + εαaWbR

α
(0) + εαbWaR

α
(0) +O(u2, u∂f,W 2) (16)

with Greek indicesα, β = 1, 2 being used to specify coordinates of the plane orthogonal to
thez-axes.

As for the curvature tensorKab, it is easily calculated to be

Kab = ∂af ∂bf +O(u2, u∂f,W 2). (17)
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Within this accuracy one, consequently, obtains

trK = 1f.
To proceed with the equations of motion, we write down equation (8) in components

referred to thez-direction and transverse plane, respectively:

∇bσ b3 + κJ3 = 0

and

∇bσ bα + κJα = 0.

The vectorEJ is easily found to beEJ = (0, 0,12f ), which yields for the above equations
1
2∂b(∂af ρ

ab) + κ 12f = 0 (18)

and

∂bρ
bβ = 0 (19)

respectively. Equation (11) now reads

ρab = λ trE δab + 2µEab

with Eab being given by (16).
Within the present approximation,EWa = (0, 0,Wa), and equation (9) is found to go over

into

∂aF
ab = 1

4s
εαβρ

βbRα(0). (20)

In deriving this equation, we have also used the fact thatI a3 = 0. Equations (18) and (19)
coincide exactly atWa = 0 with those in [7]. In our case, however, there appears an additional
equation (20) which ensures the self-consistency of the model. As will be shown later, in the
linear approximation this equation includes only gauge fields. In this case, one can use its
solutions to determine the disclination-induced sources for the remaining equations.

Notice that the foregoing procedure which allowed us to obtain (18)–(19) is in agreement
with the linearization scheme proposed within the EK model [12]. This scheme is based on
a homogeneous scaling of the gauge group generators (see also details in [13, 21]). It can be
shown that by applying this procedure to (8) and (9) one can get (18)–(20). It is important to
note, however, that in accordance with this procedure one has to choose properly the relation
between the model parameters (λ/s andµ/s). Depending on this choice one can describe
elastic media with different properties. The classical elasticity theory which is of our interest
here is recovered in the limitλ/s ∼ ε andµ/s ∼ ε whereε is a scaling parameter. In this
case, (20) reduces to

∂aF
ab = 0. (21)

A singular vortex-like solution of (21) reads [19]

Wb = −νεbc∂c logr (22)

whereν is the Frank index.
One can easily see that (18) is rewritten as

(∂b∂af )σ
ab = −κ212f (23)

where (19) is taken into account. Let us consider (19). It resembles the usual equilibrium
condition but the stress tensor includes the gauge fields. Within the linear approximation
terms withWb can be separated thus forming the source on the right-hand side of (19). In
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particular, for the planar case one can reproduce the known exact solution for a straight wedge
disclination [20].

To compare our results with those in [1] let us differentiate equation (19), which yields

∂β∂bρ
bβ = 0.

After straightforward calculations one can rewrite this equation as

(λ/4µ + 1/2)1 trE = (∂x∂yf )2 − ∂2
x f ∂

2
y f + εαb∂αWb. (24)

Notice that the last term on the right-hand side of (24) describes a source due to disclination
fields. For solution (22) it takes the form

εαb∂αWb = ν1 logr = 2πνδ(Er).
Introducing the Airy stress functionχ(Er) by σbα =: εbmεαn∂m∂nχ(Er), one can finally rewrite
equations (23) and (24) as

κ12f = (∂2
yχ)(∂

2
x f ) + (∂2

xχ)(∂
2
y f )− 2(∂x∂yχ)(∂x∂yf )

K−1
0 12χ = (∂x∂yf )2 − (∂2

x f )(∂
2
y f ) + 2πνδ(Er) (25)

respectively. HereK0 = 4µ(λ + µ)/(λ + 2µ), and trE = (1/(λ + µ))1χ(Er). As is
seen, equation (25) are exactly the von Karman equations given in [1] for defects in hexatic
membranes. It should be mentioned once more that the source term in (25) has not appeared
ad hocbut is generated by the gauge fields due to a disclination. Its exact form follows
from the self-consistent solution of the basic model equations. An analysis of (25) shows [1]
that isolated positive (fivefold) disclinations on free membranes buckle into a cone, while the
negative (sevenfold) disclination leads to a saddle surface. The energy of a positive disclination
was found to be less than that of a negative one. It is interesting that this asymmetry is absent
in flat membranes and monolayers. Notice that the linear approximation used in this section
allows us to properly describe only the small out-of-plane fluctuations. Otherwise, the full set
of equations (8) and (9) should be examined.

4.3. Single disclination on arbitrary elastic surface

In this subsection we demonstrate a non-trivial realization of the proposed model: the case of
a single disclination on an elastic surface. Let us consider a surface60 in a three-dimensional
Euclidean spaceR3. For any pointp ∈ 60 choose thez-axis to be normal to a tangent plane
atp. Having in that way fixed the coordinate system inR3, we consider in what follows60

as an embedding

(u, v)→ (Rx(0)(u, v), R
y

(0)(u, v), R
z
(0)(u, v))

with x1 = u,x2 = v being the local coordinates on60. Under a local deformation concentrated
atp, any nearby point undergoes a displacement

ER(0)(u, v)→ ER(u, v) = ( ER⊥(0)(u, v) + EU⊥(u, v), Rz(u, v)).
As above, the transverse displacementEU⊥ is assumed to be small compared to the vertical one
Uz := Rz−Rz(0), the latter being considered as a slowly-varying function on a local chart that

containsp. One may also putEWa = (0, 0,Wa), which is in agreement with the assumptions
made. The strain tensor then becomes

Eab = ∂a ER⊥(0)∂b EU⊥ + εαβ∂aR
β

(0)R
α
(0)Wb + (a ↔ b) + ∂aR

z∂bR
z − ∂aRz(0)∂bRz(0)

+O(U2
⊥,W

2, U⊥W). (26)
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In order to make a more close connection with the gauge theory of defects for fluctuating
membranes of the preceding section, we find it appropriate to consider here a coordinateRz as
a dynamical variable rather than its displacement,Uz. In particular, the curvature tensorKab
appears then as a direct covariant generalization of equation (17). Indeed, it is clear that

EN(0)
p := [∂u ER(0), ∂v ER(0)]

|[∂u ER(0), ∂v ER(0)]| |p
= (0, 0, 1).

On the other hand, we have

Kab |p′ = ENp′ ·DaDb
ER|p′ = ( ENp + δ ENp) ·DaDb

ER|p′ = ENp ·DaDb
ER|p′ +O(‖δ ENp‖)

δ ENp := ENp′ − ENp.
As ENp are sufficiently smooth and slowly-varying functions of a reference pointp, there exists
a certain neighbourhood ofp, Vp, such that‖δ ENp‖ � 1 for anyp′ ∈ Vp.

In the linear approximationENp can be replaced by its unperturbed valueEN(0)
p , so that for

a local deformation of60 in the vicinity ofp one obtains

Kab = DaDbR
z

and consequently

trK = gabDaDbR
z = DaD

aRz =: 1covR
z

where the covariant Laplacian operator has been introduced.
The equation of motion (8) in thez and transverse components now reads

1
2Db[(∂aR

z)ρab] + κ12
covR

z = 0 (27)

and

Db[(∂a ER⊥(0))ρab] = 0 (28)

respectively†. In the Monge gauge,ER(0) = (Rx(0) = u =: x,Ry(0) = v =: y,Rz(0)(x, y)), the
last equation is written as

Dbρ
ab = 0. (29)

As is seen, (27) and (29) are nothing but a formally covariant representation of the Landau
equations (18) and (19) with the non-trivial geometry of60 taken into account. These equations
should be accompanied by the field equation (9) which in the linear approximation describes
theSO(2) gauge field in a curved background:

DaF
ab = 0 Fab = ∂aWb − ∂bWa. (30)

The following steps are just the same as in the previous subsection. A singular solution of (30)
takes the form

Wb = −νεbcDcG(x, y) (31)

whereG(x, y) satisfies the equation

DaD
aG(x, y) = 2πδ2(x, y)/

√
g

with εab = √gεab being the fully antisymmetric tensor on60. Note also that a conventional
‘flat’ δ-functionδ2(x, y) := δ(x)δ(y) is to be multiplied by a metric factor 1/

√
g to make a

scalar under a coordinate reparametrization.

† Components of the 3-vectorsER(u, v) and ER(0)(u, v) appear asscalar functions with respect to a change of
coordinates on60 and hence there is no need to replace the ordinary derivatives by the covariant ones in equations (27)
and (28).
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Equation (27) now reads
1
2(DbDaR

z)ρab = −κ212
covR

z (32)

while (29) can be differentiatedDaDbρ
ab = 0 to yield

(λ/2µ + 1)1covtrE = (DaDbR
z)2 − (1covR

z)2 − (Rz ↔ Rz(0)) + 4πνδ2(x, y)/
√
g (33)

where the conditionεabDaWb = ν1covG(x, y) has been taken into account. Obviously,
equation (33) is the covariant analogue of (24). It should be mentioned that due to the specific
choice of the coordinate system related to a certain reference point, equations (32) and (33)
describe asingledefect located at this point. In this regard, adding at least one more disclination
makes the situation more difficult, so that turning to the basic equations of motion (8) and (9)
seems necessary.

5. Conclusion

The model developed in this paper allows us to describe disclinations on arbitrary elastic
surfaces. It includes Riemannian surfaces that may change their geometry under deformations.
In particular, within the proposed model one can study elastic properties of various materials
containing disclinations: monolayers (flat surface), membranes (curved surface), fullerenes
(spherical surface) as well as nanotubes (which can be considered as deformed spheres). For
the flat surface, we have obtained the extended variant of the EK gauge theory that includes
originally distributed disclinations. Within the linear scheme our model recovers the von
Karman equations for membranes with a disclination-induced source being generated by
gauge fields. For a single disclination on an arbitrary surface a covariant generalization of
these equations is obtained.

In our opinion, the most intriguing application of this theory might be that for a disclination
on a sphere. The obtained equations (27) and (29) are the most general ones which allow us
to study this problem properly. Notice, however, that this is a challenging task. Indeed, an
analytical solution of the simpler system (18) and (19) has been obtained only in the limiting
caseK0 → ∞. Nevertheless, there are precise numerical solutions of (18) and (19) for
arbitraryK0 (see, e.g.[1] and the references therein). Obviously, any attempts to solve (27)
and (29), either analytically or numerically would be of great interest.

Another important problem relevant for the physics of fullerenes and carbon nanotubes
concerns the electronic properties of these materials. An attempt at extending the EK gauge
theory of defects to include fermionic fields has been made in [22]. As has been shown,
the self-consistent gauge model allows one to describe physically interesting effects: the
Aharonov–Bohm-like electron scattering due to disclinations [19], the electron localization
near topological defects [21, 23] as well as the formation of the polaron-type states near
dislocations [24]. We expect that incorporating fermions in the above-formulated theory may
provide new insight into disclination theory in a curved background in the presence of electrons
and reveal some novel physical phenomena. Fortunately, our approach allows for a natural
extension of the model to include fermions. Indeed, the model action (1) is constructed out of
sections of the vector bundles over60. Considering, on the other hand, a spin bundle over60,
that is a tangent bundleT60→ 60 with a structure group Spin(2), amounts to incorporating
fermions into the theory, with fermionic fields being local sections of the spin bundle. (We
assume that60 admits a spin structure, which is the case, for instance, if60 appears as a
Riemann surface with genusg.) Since dim60 = 2, the spin connection term drops out from
an action, so that the Dirac operator on60 takes the form

D = iγ a∂a +m {γ a, γ b} = gab
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whereγ a = eaαγ
α, gab = eαa e

β

b δαβ and the spin group Spin(2) is generated by two Dirac
matricesγα, α = 1, 2, which can be taken as the Pauli matricesσ1 andσ2. An explicit
form for the fermion action as well as a full set of ensuing equations of motion will be given
elsewhere.
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